import sys, threading
def DFS(v,k,boolean):
ret = v.lable * k
ret2 = v.lable * (k+1)
child_size = len(v.child)
if child_size == 0:
if boolean:
return [ret,ret2]
else:
return [ret ,0]
if child_size ==1:
tmp = DFS(v.child[0],k,boolean)
if boolean:
return [ret + tmp[0], ret2 + tmp[1]]
else:
return [ret + tmp[0], 0]
k1 = int(k/child_size)
remind = k - k1*child_size
if remind == 0 and not boolean:
for child in v.child:
tmp = DFS(child,k1,False)
ret += tmp[0]
return [ret,0]
tmp_list = []
for child in v.child:
tmp= DFS(child,k1,True)
ret += tmp[0]
ret2 += tmp[0]
dif = tmp[1] - tmp[0]
tmp_list.append(dif)
tmp_list.sort()
tmp_list.reverse()
i = 0
while i < remind:
ret += tmp_list[i]
ret2 += tmp_list[i]
i += 1
if boolean :
ret2 += tmp_list[remind]
return [ret,ret2]
else:
return [ret,0]
class treeNode:
def __init__(self):
self.child = list()
self.lable = 0
def DFS_Helper():
t = int(input())
for iter in range(t):
line1 = input().split(" ")
line2 = input().split(" ")
line3 = input().split(" ")
n = int(line1[0])
k = int(line1[1])
arr_s = [int(x) for x in line3]
node_list = [treeNode() for i in range(0,n)]
i = 2
for x in line2:
tmp = int(x)
node_list[tmp-1].child.append(node_list[i-1])
i += 1
i = 0
for s in arr_s:
node_list[i].lable = s
i += 1
root = node_list[0]
try:
print(DFS(root, k,False)[0])
except Exception as e:
print(e)
exit()
sys.setrecursionlimit(3*(10**5))
threading.stack_size(10**8)
t1 = threading.Thread(target=DFS_Helper)
t1.start()
/* Author : Hakesh D */
#include <bits/stdc++.h>
using namespace std;
// #include <ext/pb_ds/assoc_container.hpp>
// #include <ext/pb_ds/tree_policy.hpp>
// using namespace __gnu_pbds;
// #define ordered_set tree<int, null_type,less<int>, rb_tree_tag,tree_order_statistics_node_update>
#define int long long
#define ld long double
#define ar2 array<int,2>
#define MAX *max_element
#define MIN *min_element
#define all(c) (c).begin(), (c).end()
#define sz(x) (int)(x).size()
#define inf 1e9
#define INF 1e18
int cil(int x,int y){if(x%y == 0) {return x/y;}; return x/y+1;}
/***********************************************************************************************/
void solve(){
int n, k;
cin >> n >> k;
vector<int> par(n+1);
vector<vector<int>> adj(n+1);
for(int i = 2; i <= n; i++) {
int p; cin >> p; par[i] = p;
adj[p].push_back(i);
}
vector<int> s(n+1, 0);
for(int i = 1; i <= n; i++) cin >> s[i];
vector<int> val1(n+1, 0), val2(n+1, 0);
function<void(int, int)> dfs = [&](int v, int a) {
int q = sz(adj[v]);
if(q == 0) {
val1[v] = s[v] * a;
val2[v] = s[v] * (a + 1);
return;
}
for(auto u: adj[v]) {
dfs(u, a/q);
}
//val1[v] wrt a
int r = a % q;
int curr = a * s[v];
vector<int> extras;
for(auto u: adj[v]) {
curr += val1[u];
extras.push_back(max(0ll, val2[u] - val1[u]));
}
sort(all(extras), greater<int>());
for(int i = 0; i < r; i++) curr += extras[i];
val1[v] = curr;
// val2[v] wrt a+1
r = (a + 1) % q;
if(r == 0) r = q;
curr = (a + 1) * s[v];
extras.clear();
for(auto u: adj[v]) {
curr += val1[u];
extras.push_back(max(0ll, val2[u] - val1[u]));
}
sort(all(extras), greater<int>());
for(int i = 0; i < r; i++) curr += extras[i];
val2[v] = curr;
};
dfs(1, k);
cout << val1[1] << endl;
}
int32_t main(){
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int tt = 1;
cin >> tt;
for(int tc = 1; tc <= tt; tc++) {
//cout << "Case #" << tc << ": ";
solve();
}
return 0;
}
/***********************************************************************************************/
Duration | Birthday Party |
e-maze-in | Bricks Game |
Char Sum | Two Strings |
Anagrams | Prime Number |
Lexical Sorting Reloaded | 1514A - Perfectly Imperfect Array |
580A- Kefa and First Steps | 1472B- Fair Division |
996A - Hit the Lottery | MSNSADM1 Football |
MATCHES Playing with Matches | HRDSEQ Hard Sequence |
DRCHEF Doctor Chef | 559. Maximum Depth of N-ary Tree |
821. Shortest Distance to a Character | 1441. Build an Array With Stack Operations |
1356. Sort Integers by The Number of 1 Bits | 922. Sort Array By Parity II |
344. Reverse String | 1047. Remove All Adjacent Duplicates In String |
977. Squares of a Sorted Array | 852. Peak Index in a Mountain Array |
461. Hamming Distance | 1748. Sum of Unique Elements |
897. Increasing Order Search Tree | 905. Sort Array By Parity |